

STAHLBAU

AUSGABE 4

ARBEITSHILFE HV-VERBINDUNGEN

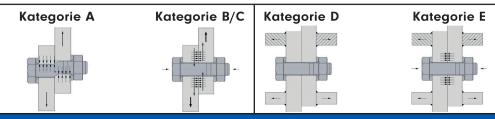
nach DIN EN 1993-1-8 / DIN EN 1090-2 DIN EN 1993-1-8/NA / DIN EN 14399

- Rand- und Lochabstände
- · Lochleibungstragfähigkeiten
- · Abschertragfähigkeiten
- Durchstanzwiderstände
- Abmessungen und Klemmlängen
- Vorspannkräfte, Anziehmomente, Drehwinkel
- Überprüfung der Vorspannung
- Gleitwiderstände

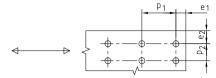
GET A GRIP.

DER HV-SPEZIALIST

Wer ein technisch und architektonisch anspruchsvolles Gebäude anschaut, denkt nicht gleich an Schrauben von **Friedberg**. Konstruktion und Bauweise beherrschen das Bild. Aber ohne hochwertige Schraubverbindungen sind viele bauliche Highlights nicht denkbar – und schon aar nicht umsetzbar.


Architekten und Planer im modernen Stahlbau verlassen sich daher seit vielen Jahren auf Verbindungstechnologie von **Friedberg**. Was unsere Werke verlässt, hat harte Prüfungen hinter sich, jede Menge Belastung vor sich – und besondere Werte in sich: zertifizierte Qualität, eine fundierte Entwicklung, dokumentierte Abläufe und unsere Erfahrung von über 130 Jahren.

Diese Arbeitshilfe für HV-Verbindungen gibt Ihnen einen Überblick über die technische Verwendbarkeit unserer Schrauben für den Hochbau und soll Ihnen als Begleiter bei der Anwendung von HV-Verbindungen in der täglichen Praxis die Arbeit erleichtern.


1 Ben	lemessungskategorien, Ausführungsformen und Nachweiskriterien nach DIN EN 1993-1-8													
Kategorie		Ausführungsform	Vorspannung	Nachweiskriterium										
А	jen	Scher-/ Lochleibungs- verbindung	handfest angezogen	$F_{\text{v,Ed}} \le \begin{cases} F_{\text{v,Rd}} \\ F_{\text{b,Rd}} \end{cases}$										
В	Scherverbindungen	Gleitfeste Verbindung im Grenzzustand der Gebrauchstauglichkeit planmäßig vorgespann auf Mindestvorspannkro $F_{\rm p,C}$ nach DIN EN 1090-		$ \begin{array}{cccc} F_{\rm v,Ed,ser} & \leq & F_{\rm s,Rd,ser} \\ F_{\rm v,Ed} \leq & \left\{ \begin{array}{c} F_{\rm v,Rd} \\ F_{\rm b,Rd} \end{array} \right. \end{array} $										
С	Scherve	Gleitfeste Verbindung im Grenzzustand der Tragfähigkeit	planmäßig vorgespannt auf Mindestvorspannkraft $F_{\rm p,C}$ nach DIN EN 1090-2	$ F_{\text{v,Ed}} \leq \left\{ \begin{array}{c} F_{\text{s,Rd}} \\ F_{\text{b,Rd}} \end{array} \right. $ $ \Sigma F_{\text{v,Ed}} \leq N_{\text{net,Rd}} $										
D	ر	nicht vorgespannt	handfest angezogen											
E	Zugverbindungen	Vorgespannt	planmäßig vorgespannt auf Mindestvorspannkraft $F_{\rm p,C}$ nach DIN EN 1090-2 nicht voll vorgespannt auf Regelvorspannkraft $F_{\rm p,C}^{*}$ nach DIN EN 1993-1-8/NA	$F_{\text{t,Ed}} \leq \left\{ egin{array}{c} F_{\text{t,Rd}} \\ B_{\text{p,Rd}} \end{array} ight.$										

Anmerkung

Wird die Vorspannung nicht für den Gleitwiderstand eingesetzt, sondern aus anderen Gründen für die Ausführung oder als Qualitätssicherungsmaßnahme gefordert, dann kann die Höhe der Vorspannkraft gemäß Nationalem Anhang DIN EN 1993-1-8/NA berücksichtigt werden.

Blechdicke t mit Lochdurchmesser d_{n}

	Randabstände		Lochabstände					
Me	$e_{_1}$	1,2 d ₀	p_1	2,2 d ₀				
Min	$e_{_2}$	1,2 d ₀	p_{2}	2,4 d ₀				
Max	$e_{_1}$	4 t + 40 mm	$p_{_1}$	min \ 14 t				
Max	$e_{_2}$	4 1 40 111111	$p_{_2}$	'''''				

Vorspannkräfte $F_{\rm p,c}$ und Voranziehmomente für das Kombinierte Verfahren entsprechend DIN EN 1090-2:2011-10 für HV-Garnituren der k-Klasse K1

Hinweis

Zum Erreichen des höheren Vorspannkraftniveaus $F_{
m p,c}$ nach DIN EN 1090-2 $\sin d$

FRIEDBERG HV-Garnituren mit dem kombinierten Verfahren zu verschrauben, da diese ausschließlich in der k-Klasse K1 hergestellt werden. Das Drehmomentverfahren ist in Kombination mit Garnituren der k-Klasse K1 zum Erreichen des Vorpsannkraftniveaus $F_{\rm p,C}$ nicht zulässig.

Schraubengröße	Mindest- vorspannkraft		Kombiniertes Verfahren
Germadisengroise	$F_{p,C}$	Voranziehmoment	Weiterdrehwinkel
M 12	59	75	
M 16	110	190	
M 20	172	340	
M 22	212	490	gemäß nachfolgender Tabelle
M 24	247	600	, and the second
M 27	321	940	
M 30	393	1240	
M 36	572	2100	

Stufenweises Anziehen und Weiterdrehwinkel beim Kombinierten Verfahren entsprechend DIN EN 1090-2:2011-10 für HV-Garnituren

1. Anziehschritt	Aufbringen des Voranziehmomentes gemäß obiger Tabelle für alle Elemente in einer Verbindung. Markierung der Lage aller Muttern relativ zu den Schraubengewinden.
2. Anziehschritt	Sichtprüfung mit Ergänzung von fehlenden Markierungen. Aufbringen des Weiterdrehwinkels in Abhängigkeit von der Klemmlänge.

Gesamtnenndicke Σt der zu verbindenden Teile (einschließlich Futterbleche und Scheiben)	Weiterdrehwinkel im zweiten Anziehschritt							
d=Schraubendurchmesser	Grad	Drehung						
$\Sigma t < 2d$	60	1/6						
$2d \le \Sigma t \le 6d$	90	1/4						
$6d \le \Sigma t \le 10d$	120	1/3						

Anmerkung

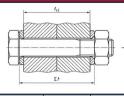
lst die Oberfläche unter dem Schraubenkopf oder der Mutter (unter Berücksichtigung von gegebenenfalls eingesetzten Keilscheiben) nicht senkrecht zur Schraubenachse, sollte der erforderliche Weiterdrehwinkel durch Versuche bestimmt werden.

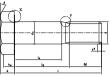
5		äfte $F_{ m p,c}^*$ und Anziehdrehmomen d DIN EN 1993-1-8/NA:2010-12 für k-K									
э̂ве	Regel- vor-	Drehimpuls- verfahren	Modifiziertes Drehmomentverfahren	Modifiziertes kombiniertes Verfahren							
Schraubengröße	spann- kraft $F_{ m p,C}*$ kN	Einzustellende Vorspannkraft $F_{ m V,DI}$ kN	Aufzubringendes Anziehmoment $M_{_{ m A}}$ Nm	Voranziehmoment $M_{_{ m A,MKV}}$ Nm							
S		Oberflächenzustand Garnitur feuerverzinkt, Mutter mit Molybdändisulfid behandelt und Garnitur wie hergestellt, Mutter mit Molybdändisulfid behandelt									
M 12	50	60	100	75							
M 16	100	110	250	190							
M 20	160	175	450	340							
M 22	190	210	650	490							
M 24	220	240	800	600							
M 27	290	320	1250	940							
M 30	350	390	1650	1240							
M 36	510	560	2800	2100							

6	Erforderliche Weiterdrehwinkel 🕅 _{MKV} für das modifizierte kombinierte Verfahren											
Teile	mtnenndicke Σt der zu verbindenden (einschließlich aller Futterbleche und heiben) d=Schraubendurchmesser	Während des zwei aufzubringender We	ten Anziehschrittes eiterdrehwinkel ϑ _{MKV}									
	,	Grad	Drehung									
	$\Sigma t < 2d$	45	1/8									
	$2d \le \Sigma t < 6d$	60	1/6									
	$6d \le \Sigma t < 10d$	90	1/4									
	$10d < \Sigma t$	keine Empfehlung	keine Empfehlung									

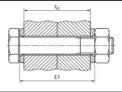
Anmerkung

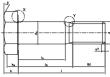
Zum Erreichen der Vorspannkraft $F_{\rm p,C}^*$ wird in der Praxis das modifizierte Drehmomentverfahren bevorzugt verwendet.


Korrosionsschutz und Auslieferungszustand


Die Schrauben, Muttern und Scheiben werden in feuerverzinkter Ausführung mit unter Prozessbedingungen geschmierter Mutter ausgeliefert. Das Innengewinde der Mutter ist nicht feuerverzinkt und lediglich durch die aufgebrachte Schmierung vor Korrosion geschützt. Unsachgemäße Transport- und Lagerungsbedingungen können zu übermäßiger Korrosion des Innengewindes und damit zu einer Veränderung des beim Auslieferungszustand eingestellten Zusammenhangs zwischen Anziehmoment und Vorspannkraft führen.

Abmessungen und Klemmlängen in mm




Schraubengröße	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36					
Gewinde- \varnothing d	12	16	20	22	24	27	30	36					
Schaft- \varnothing HV $d_{s,nom}$	12	16	20	22	24	27	30	36					
Schaft- \varnothing HVP $d_{S,nom}$	13	17	21	23	25	28	31	37					
Kopfhöhe $k_{_{\mathrm{nom}}}$	8	10	13	14	15	17	19	23					
Mutterhöhe $m_{_{\mathrm{nom}}}$	10	13	16	18	20	22	24	29					
Schlüsselweite s max	22	27	32	36	41	46	50	60					
Eckenmaß $e_{_{ m min}}$	23,91	29,56	35,03	39,55	45,20	50,85	55,37	66,44					
Scheiben-Außen- \varnothing $d_{_{2,\max}}$	24	30	37	39	44	50	56	66					
Scheibendicke h_{nom}	3	4	4	4	4	5	5	6					
Schraubenlänge $\ell_{_{nom}}$	Klemmlängenbereich Σt_{\min} bis Σt_{\max}												
35	16 - 21												
40	21 - 26	17 - 22											
45	26 - 31	22 - 27	18 - 23										
50	31 - 36	27 - 32	23 - 28	22 - 27									
55	36 - 41	32 - 37	28 - 33 33 - 38	27 - 32	20 74								
60 65	41 - 46 46 - 51	37 - 42 42 - 47	38 - 43	32 - 37 37 - 42	29 - 34 34 - 39								
70	51 - 56	47 - 52	43 - 48	42 - 47	39 - 44	36 - 41							
75 75	56 - 61	52 - 57	48 - 53	47 - 52	44 - 49	41 - 46	39 - 44						
80	61 - 66	57 - 62	53 - 58	52 - 57	49 - 54	46 - 51	44 - 49						
85	66 - 71	62 - 67	58 - 63	57 - 62	54 - 59	51 - 56	49 - 54	43 - 48					
90	71 - 76	67 - 72	63 - 68	62 - 67	59 - 64	56 - 61	54 - 59	48 - 53					
95	76 - 81	72 - 77	68 - 73	67 - 72	64 - 69	61 - 66	59 - 64	53 - 58					
100	81 - 86	77 - 82	73 - 78	72 - 77	69 - 74	66 - 71	64 - 69	58 - 63					
105	86 - 91	82 - 87	78 - 83	77 - 82	74 - 79	71 - 76	69 - 74	63 - 68					
110 115	91 - 96 96 - 101	87 - 92 92 - 97	83 - 88 88 - 93	82 - 87 87 - 92	79 - 84 84 - 89	76 - 81 81 - 86	74 - 79 79 - 84	68 - 73 73 - 78					
120	101 - 106	97 - 102	93 - 98	92 - 97	89 - 94	86 - 91	84 - 89	78 - 83					
125	106 - 111	102 - 107	98 - 103	97 - 102	94 - 99	91 - 96	89 - 94	83 - 88					
130	111 - 116	107 - 112	103 - 108	102 - 107	99 - 104	96 - 101	94 - 99	88 - 93					
135	116 - 121	112 - 117	108 - 113	107 - 112	104 - 109	101 - 106	99 - 104	93 - 98					
140	121 - 126	117 - 122	113 - 118	112 - 117	109 - 114	106 - 111	104 - 109	98 - 103					
145	126 - 131	122 - 127	118 - 123	117 - 122	114 - 119			103 - 108					
150	131 - 136	127 - 132	123 - 128	122 - 127	119 - 124	116 - 121	114 - 119	108 - 113					
155	136 - 141	132 - 137	128 - 133	127 - 132	124 - 129			113 - 118					
160	141 - 146	137 - 142	133 - 138	132 - 137	129 - 134	126 - 131	124 - 129	118 - 123					
165 170	146 - 151		138 - 143	137 - 142	134 - 139	131 - 136							
175		147 - 152 152 - 157	143 - 148 148 - 153	142 - 147 147 - 152	139 - 144 144 - 149	136 - 141 141 - 146	134 - 139 139 - 144	128 - 133 133 - 138					
180	161 - 166		153 - 158	152 - 157	149 - 154			138 - 143					
185		162 - 167	158 - 163		154 - 159								
190	171 - 176	167 - 172	163 - 168	162 - 167	159 - 164	156 - 161	154 - 159	148 - 153					
195		172 - 177	168 - 173	167 - 172	164 - 169	161 - 166	159 - 164	153 - 158					
200				172 - 177	169 - 174	166 - 171	164 - 169						
Weitere Schraubenlän	gen könne	n auf Anfro	age herges	tellt werde	en.								

Abmessungen und Klemmlängen in mm

Schraubengröße	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36						
Gewinde- \varnothing d	12	16	20	22	24	27	30	36						
Schaft- \varnothing HV $d_{s,nom}$	12	16	20	22	24	27	30	36						
Schaft-Ø HVP $d_{ extsf{S,nom}}$	13	17	21	23	25	28	31	37						
Kopfhöhe k_{nom}	8	10	13	14	15	17	19	23						
Mutterhöhe m _{nom}	10	13	16	18	20	22	24	29						
Schlüsselweite s _{max}	22	27	32	36	41	46	50	60						
Eckenmaß $e_{_{ m min}}$	23,91	29,56	35,03	39,55	45,20	50,85	55,37	66,44						
Scheiben-Außen- $\varnothingd_{_{2,\max}}$	24	30	37	39	44	50	56	66						
Scheibendicke h_{nom}	3	4	4	4	4	5	5	6						
Schraubenlänge ℓ nom	Paketdicke $t_{ m s2,min}$ bis $t_{ m s2,max}$													
35	10 - 15													
40	15 - 20	9 - 14												
45	20 - 25	14 - 19	10 - 15											
50	25 - 30	19 - 24	15 - 20	14 - 19										
55	30 - 35	24 - 29	20 - 25	19 - 24	04 07									
60 65	35 - 40 40 - 45	29 - 34 34 - 39	25 - 30 30 - 35	24 - 29 29 - 34	21 - 26 26 - 31									
70	45 - 50	39 - 44	35 - 40	34 - 39	31 - 36	26 - 31								
75 75	50 - 55	44 - 49	40 - 45	39 - 44	36 - 41	31 - 36	29 - 34							
80	55 - 60	49 - 54	45 - 50	44 - 49	41 - 46	36 - 41	34 - 39							
85	60 - 65	54 - 59	50 - 55	49 - 54	46 - 51	41 - 46	39 - 44	31 - 36						
90	65 - 70	59 - 64	55 - 60	54 - 59	51 - 56	46 - 51	44 - 49	36 - 41						
95	70 - 75	64 - 69	60 - 65	59 - 64	56 - 61	51 - 56	49 - 54	41 - 46						
100	75 - 80	69 - 74	65 - 70	64 - 69	61 - 66	56 - 61	54 - 59	46 - 51						
105 110	80 - 85 85 - 90	74 - 79 79 - 84	70 - 75 75 - 80	69 - 74 74 - 79	66 - 71 71 - 76	61 - 66 66 - 71	59 - 64 64 - 69	51 - 56 56 - 61						
115	90 - 95	84 - 89	80 - 85	74 - 79 79 - 84	76 - 81	71 - 76	69 - 74	61 - 66						
120	95 - 100	89 - 94	85 - 90	84 - 89	81 - 86	76 - 81	74 - 79	66 - 71						
125	100 - 105	94 - 99	90 - 95	89 - 94	86 - 91	81 - 86	79 - 84	71 - 76						
130	105 - 110	99 - 104	95 - 100	94 - 99	91 - 96	86 - 91	84 - 89	76 - 81						
135	110 - 115	104 - 109	100 - 105	99 - 104	96 - 101	91 - 96	89 - 94	81 - 86						
140	115 - 120	109 - 114	105 - 110	104 - 109	101 - 106	96 - 101	94 - 99	86 - 91						
145	120 - 125		110 - 115	109 - 114	106 - 111	101 - 106	99 - 104	91 - 96						
150 155	125 - 130		115 - 120	114 - 119	111 - 116	106 - 111	104 - 109	96 - 101						
160	130 - 135 135 - 140		120 - 125 125 - 130	119 - 124 124 - 129	116 - 121 121 - 126	111 - 116 116 - 121	109 - 114 114 - 119	101 - 106 106 - 111						
165	140 - 145		130 - 135	124 - 129 129 - 134	126 - 131	121 - 126	119 - 124	111 - 116						
170		139 - 144	135 - 140	134 - 139	131 - 136	126 - 131	124 - 129	116 - 121						
175	150 - 155		140 - 145	139 - 144		131 - 136	l	121 - 126						
180			145 - 150	144 - 149	141 - 146	136 - 141		126 - 131						
185			150 - 155	149 - 154		141 - 146		131 - 136						
190	165 - 170	159 - 164	155 - 160	154 - 159	151 - 156	146 - 151	144 - 149	136 - 141						
195	170 - 175	164 - 169	160 - 165	159 - 164	156 - 161	151 - 156								
200 Weitere Schraubenlän			165 - 170			156 - 161	154 - 159	146 - 151						
weitere schraubenlan	gen konne	ii dui Allife	age nerges	tent werde	#11 .									

Bemessungswerte der Lochleibungstragfähigkeit Fb,Rd in kN

für eine Blechdicke von t = 10 mm aus Baustahl S235 ($fu = 360 \text{ N/mm}^2$)

	HV-Garı	nitur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36	HV-G	arnitur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36
	$d_{\scriptscriptstyle 0}$ in mm		13	18	22	24	26	30	33	39	$d_{_{0}}$ i	n mm	13	18	22	24	26	30	33	39
1090-2 : 2,4 d ₀	1	9 ₁ = 30 35	29,8 37,1									$e_1 = 20$ 25	29,4 36,8	35,4						
P ₂		40 45	44,5 51,9	37,5 44,6								30 35	44,1 51,5	42,5 49,6	43,5 50,7	43,8 51,1	51,5			
N Dun	_	50 55	57,4	51,7	48,5 55,8	54,0					E E	40 45	57,4 57,4	56,7 63,7	57,9 65,2	58,4 65,7	58,8 66,2	57,4 64,5	57,9 65,2	
ੂਰ ਦ	E .	60	57,4 ↓	58,8 65,9	63,0	61,4	59,6				in Kraftrichtung	50	J.	70,8	72,4	73,0	73,6	71,7	72,4	73,6
	nng	65 70		73,0 76,5	70,3 77,5	68,7 76,0	66,9 74,3	68,1			icht	55		76,5 76,5	79,7 86,9	80,3 87,6	80,9 88,3	78,9 86,1	79,7 86,9	80,9 88,3
Löcher	<u> </u> ig .	75 80		76,5	84,8	83,3	81,6	75,3	72,8		raftı	65 70		↓	94,2 95.6	95,0 102,3	95,6 103,0	93,2 100,4	94,2 101.4	95,6 103,0
de L	Kraftrichtung	85		↓	92,0 95,6	90,6 97,9	89,0 96,4	82,5 89,6	80,0 87,3		in K	75			95,6	105,2	110,3	107,6	108,7	110,3
ff id	.⊑	90 95			95,6 J	105,2 105.2	103,7 111,1	96,8 104,0	94,5 101,8	89,4 96,7	d e ₁	80 85			↓	105,2 ↓	114,7 114,7	114,7 121,9	115,9 123,1	117,7 125,0
normale runde nt zur Kraftrichtu	d p	100 105				↓ ↓	114,7 114,7	111,2	109,0 116,3	104,1	Randabstand	90 95					↓		130,4 137,6	132,4 139,7
norn It zu	Lochabstand	110					↓ 114,7	125,5	123,5	118,8	qapi	100						↓ ↓	143,4	147,1
für	hab	115 120						129,1 129,1	130,7 138,0	126,1 133,5	Ran	105 110							143,4 ↓	154,5 161,8
Nennlochspiel für normale runde Lä Abstände senkrecht zur Kraftrichtung	0	125 130						↓ ′	143,4 143,4	140,8 148,2		115								169,2 172,1
		135							↓	155,6		125								172,1
Nennloch Abstände		140 145								162,9 170,3										
ZĂ		150								172,1 172,1										
		155								172,1										

10	Bemessungswerte der Abschertragfähigkeit $F_{ m v,Rd}$ in kN je Scherfuge									11		essun in ki	igswe N	rte d	er Zu	gtrag	fähig	keit
$A_{\rm s}~{\rm mm^2}$		84,3	157	245	303	353	459	561	817	$A_{_{\rm S}}$ mm 2	84,3	157	245	303	353	459	561	817
$A_{ m Schaft}$ mm ²		113	201	314	380	452	573	707	1018	$F_{\rm t.Rd}$ kN	60,7	113	176	218	254	330	404	588
$F_{v,Rd}$ Scherfuge im Gewinde kN 33,3			62,8	98,0	121	141	184	224	327									
$F_{ m v,Rd}$ Scherfuge im Schaft kN		54,2	96,5	151	182	217	275	339	489									

Bemessungswerte der Lochleibungstragfähigkeit Fb,Rd in kN

	für	eine Bl	für eine Blechdicke von $t=10$ mm aus Baustahl S235 ($f_0=360 \text{ N/mm}^2$)																	
	HV-Gar	nitur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36	HV-G	arnitur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36
	$d_{_{0}}$ i	n mm	13	18	22	24	26	30	33	39	d_0	in mm	13	18	22	24	26	30	33	39
1090-2 > 3 d ₀		$p_1 = 30$	44,9									e ₁ = 20	44,3							
100 N		35	55,9									25	55,4	53,3						
P ₂		40	67,0	56,5								30	66,5	64,0	65,5	66,0				
ш		45	78,1	67,2							_	35	77,5	74,7	76,4	77,0	77,5	0//	07.7	
DIN		50	86,4	77,9	73,1						E	40	86,4	85,3	87,3	88,0	88,6	86,4	87,3	
h C	E	55	86,4	88,5	84,0	81,4	00.7					45 50	86,4	96,0 106,7	98,2 109,1	99,0	99,7	97,2	98,2	440.0
nach 1,5 d	E	60	↓	99,2	94,9	92,4	89,7				in Kraftrichtung	55	1	115,2		110,0		108,0		110,8
	Kraftrichtung	65 70		109,9	105,8	103,4	100,8					60			120,0	121,0	132,9	118,8		
Löcher ng e₂≥	₽			115,2	116,7	114,4	,	102,6	400 /		≝	65		115,2	130,9 141,8	132,0 143,0		129,6 140,4	130,9	132,9
: 0 0	.5	75 80		115,2	127,6		123,0		109,6		₹	70		*	144.0					, .
1 5	₽	85		↓	138,5	136,4			120,5		2	75						151,2	152,7	155,1
runde ftricht	ુ	90			144,0	147,4	145,1		131,5	47.4.	.⊑	80			144,0 J	158,4 158,4	172,8	162,0 172,8	163,6 174,5	
2 ∄	⊑	95			144,0	158,4 158,4	156,2 167,3		142,4		- e	85			*	156,4	172,8	183,6		
<u>e</u> g	p, i	100			1	156,4	172,8		153,3 164,2		힏	90				*		194,4		199.4
말		105				+	172,8		175,1	167.8	<u> </u>	95					\		207,3	' '
piel für normale runde Lö senkrecht zur Kraftrichtung	Lochabstand	110					1, 1,0		186,0		Randabstand	100						194,4	216,0	221,5
<u> </u>	st	115					Ψ.			190,0	ဗိ	105							216,0	' '
ija ej	헐	120						,		201,0	5	110							1	243.7
ie K	뒿	125						177,7		212,1	≃	115							Ψ	254,8
S S	3	130						*		223,2		120								259,2
Nennlochspiel für normale Abstände senkrecht zur Kro		135							12 10,0	234,3		125								259,2
lg in		140							_	245,4										.,-
en		145								256,4										
Z <		150								259,2										
		100								250.2	l									

Bemessungswerte der Lochleibungstragfähigkeit \emph{F} b,Rd in kN

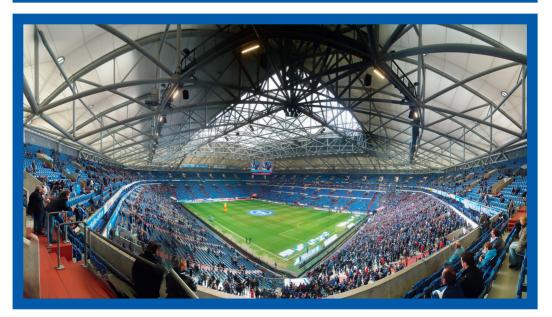
für eine Blechdicke von t = 10 mm aus Baustahl S235 ($fu = 360 \text{ N/mm}^2$)

	HVP-Gc	ırnitur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36	HVP-	Garnitur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36
2-5	$d_{_{0}}$ i	n mm	13	17	21	23	25	28	31	37	d_0	in mm	13	17	21	23	25	28	31	37
286-2 4 d ₀		p ₁ = 30	32,3									e ₁ = 20	31,9							
ISO 2 = 2,4		35	40,2									25	39,8	39,8						
		40	48,2	43,4								30	47,8	47,8	47,8	47,8	47,8			
iäfi P		45	56,2	51,4							_	35	55,8	55,8	55,8	55,8	55,8	55,8		
d_0 und p_2		50	62,2	59,4	54,6						E	40	62,2	63,7	63,7	63,7	63,7	63,7	63,7	
ຫຼ _ິ	E	55	62,2	67,3	62,5	60,2	57,8					45	62,2	71,7	71,7	71,7	71,7	71,7	71,7	71,7
H11 1,2 d		60	1	75,3	70,5	68,1	65,7				l š	50	1	79,7	79,7	79,7	79,7	79,7	79,7	79,7
1,2	in Kraftrichtung	65		81,3	78,5	76,1	73,7	70,1			in Kraftrichtung mm	55		81,3	87,6	87,6	87,6	87,6	87,6	87,6
der Toleranzlage Kraftrichtung e ₂ = 1	≩	70		81,3	86,5	84,1	81,7	78,1	74,5		ļ Ĕ	60		81,3	95,6	95,6	95,6	95,6	95,6	95,6
zlaç 1 e2	<u>.</u>	75		↓ ↓	94,4	92,0	89,6	86,1	82,5		₩	65		↓	100,4	103,6	103,6	103,6	103,6	103,6
5 E	₫	80			100,4	100,0	97,6	94,0	90,4		_ - -	70			100,4	110,0	111,6	111,6	111,6	111,6
der Toleranz Kraftrichtung	=====================================	85			100,4	108,0	105,6	102,0	98,4	91,2	.⊑	75			1		119,5	119,5	119,5	119,5
 ::		90			1	110,0	113,5	110,0	106,4	99,2	-e-	80				1	119,5	127,5	127,5	127,5
aff a	<i>p</i> ₁ i	95				110,0	119,5	117,9	114,3	107,2	힏	85					↓	133,9	135,5	135,5
	'n	100				1	119,5	125,9	122,3		Randabstand	90						133,9	143,4 148,2	143,4 151,4
L Z	8	105					↓	133,9	130,3	123,1	sq	95						*		
용분	st	110						133,9	138,2	131,1 139,0	용	100							148,2	159,4
	별	115						*	146,2	,	ä	105 110							1	167,3 175,3
sc kr	Lochabstand	120 125							148,2 148,2	147,0 155,0	~	115								176,9
ser	2	130							140,2	162,9		120								
<u>6</u> <u>B</u>		135								170,9		125								176,9 ↓
Löcher für Passschrauben Abstände senkrecht zur		140						_		176,9		123								*
er stö										176,9										
ch Ab		145								1/0,9										
		150																		
		155									1									

14	Bemessungswerte der Abschertragfähigkeit $F_{ m V,Rd}$ in kN je Scherfuge							15	nessui d in k		erte c	ler Zu	ıgtraç	gfähiç	gkeit			
$A_{\rm schaft}$ mm ²		133	227	346	415	491	616	755	1075	$A_{\rm s}$ mm 2	84,3	157	245	303	353	459	561	817
F_{-} kN		63,7	109	166	199	236	296	362	516	$F_{\rm en}$, kN	60,7	113	176	218	254	330	404	588

16

Bemessungswerte der Lochleibungstragfähigkeit $F_{\mathrm{b,Rd}}$ in kN


	für eine Blechdicke von t = 10 mm aus Baustahl S235 ($f_{\rm U}$ = 360 N/mm²)																		
HVP-Garnit	tur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36	HVP-	Garnitur	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36
$d_{\scriptscriptstyle 0}$ in m	ım	13	17	21	23	25	28	31	37	d_{0}	in mm	13	17	21	23	25	28	31	37
Lochabstand p_{\cdot} in Kraftrichtung mm	35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 125 120 135 140 145 150	48,6 60,6 72,6 84,6 93,6 93,6 \$4,0	65,4 77,4 89,4 101,4 113,4 122,4 ↓	130,2 142,2 151,2	126,6 138,6 150,6 162,6 165,6	123,0 135,0 147,0 159,0 171,0	117,6 129,6 141,6 153,6 165,6 177,6 189,6 201,6	124,2 136,2 148,2 160,2 172,2 184,2 196,2 208,2 220,2 223,2	137,4 149,4 161,4 173,4 185,4 197,4 209,4 221,4	Randabstand e, in Kraftrichtung mm	e ₁ = 20 25 30 35 40 45 50 60 65 70 75 80 85 90 95 100 105 115 120 125	48,0 60,0 72,0 84,0 93,6 \$3,6 \$4,0	120,0 122,4	120,0 132,0	120,0 132,0 144,0 156,0 165,6	120,0 132,0 144,0 156,0 168,0	120,0 132,0 144,0 156,0 168,0 180,0 192,0 201,6	120,0 132,0 144,0 156,0 168,0 180,0 192,0 204,0 216,0	120,0 132,0 144,0 156,0 168,0 180,0 192,0 204,0 216,0 228,0
H	Lochabstand p_1 in Kraftrichtung mm	Tochabstand phi in Kraftrichtung mm 550 665 55 660 775 75 80 95 100 105 115 120 125 125 130 135 140 145 150 150	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

17	Bemessungswerte des Durchstanzwiderstandes $oldsymbol{B}_{ m p,Rd}$ in kN
	Werkstoffe nach DIN EN 10025 mit einer Blechdicke von $t = 10$ mm

Werkstoff Anbauteil	$f_{\rm u} {\rm N/mm^2}$	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36
S235	360	122	151	179	202	231	260	283	340
S275	430	146	181	214	242	276	311	338	406
S355	490	167	206	244	275	315	354	386	463

18 Bemessungswerte des Gleitwiderstandes $F_{\rm s,Rd}$ in kN

	1								^		
Grenzzustand	Vorspannkraft	Gleitflächen-	Reibungszahl			50	hraub	engro	15e		
OTCHIZZOSIANA	Vorspannkran	klasse	μ	M 12	M 16	M 20	M 22	M 24	M 27	M 30	M 36
		А	0,5	26,8	50,0	78,2	96,4	112	146	179	260
	$F_{\rm p,C}$	В	0,4	21,5	40,0	62,5	77,1	89,8	117	143	208
	1 p,C	С	0,3	16,1	30,0	46,9	57,8	67,4	87,5	107	156
Gebrauchs-		D	0,2	10,7	20,0	31,3	38,5	44,9	58,4	71,5	104
tauglichkeit		А	0,5	22,7	45,5	72,7	86,4	100	132	159	232
	F .*	В	0,4	18,2	36,4	58,2	69,1	80,0	105	127	185
	$F_{p,C}^{}}$	С	0,3	13,6	27,3	43,6	51,8	60,0	79,1	95,5	139
		D	0,2	9,1	18,2	29,1	34,5	40,0	52,7	63,6	92,7
		Α	0,5	23,6	44,0	68,8	84,8	98,8	128	157	229
	F	В	0,4	18,9	35,2	55,0	67,8	79,0	103	126	183
	$F_{p,C}$	С	0,3	14,2	26,4	41,3	50,9	59,3	77,0	94,3	137
Tragfähigkeit		D	0,2	9,4	17,6	27,5	33,9	39,5	51,4	62,9	91,5
Hagianigkeit		А	0,5	20,0	40,0	64,0	76,0	88,0	116	140	204
	F *	В	0,4	16,0	32,0	51,2	60,8	70,4	92,8	112	163
	$F_{p,C}^{}$	С	0,3	12,0	24,0	38,4	45,6	52,8	69,6	84,0	122
		D	0,2	8,0	16,0	25,6	30,4	35,2	46,4	56,0	81,6

AUGUST FRIEDBERG GMBH

Achternbergstraße 38 A 45884 Gelsenkirchen

Tel.: +49 (0) 2 09-91 32-0 Fax.: +49 (0) 2 09-91 32-178 E-mail: info@august-friedberg.de

www.august-friedberg.de

Seit über 125 Jahren verlassen sich viele Unternehmen auf Produkte aus dem Hause **Friedberg**. Was einst mit Schrauben für den Bergbau der Region begann, wuchs zu einem umfassenden Programm hochwertiger Verbindungen und Befestigungssysteme.

Friedberg ist nicht nur eines der traditionsreichsten Unternehmen der Branche, sondern auch einer der Marktführer im Bereich hochwertiger Verbindungstechnologie. Unsere Anfänge liegen im Bergbau, der damals wichtigsten Industrie an unserem Standort im zentralen Ruhrgebiet. Mit dem industriellen Boom begann früh der Schritt von Friedberg in Hochtechnologie-Branchen wie Automobil- und Fahrzeugbau, Maschinen- und Anlagenbau, konstruktiver Hochbau und Spezialprodukte für andere Bereiche. Heute ist Friedberg der führende Hersteller auch von Verschraubungstechnik in der wegweisenden Windenergie-Technik. Von der Fundamentbefestigung bis hin zur Turmverschraubung und Rotorblatt-Verschraubung bestehen heute viele Windkraftanlagen weltweit buchstäblich von oben bis unten aus unserem Material.

Umfassende Entwicklungen, sorgfältige Produktions- und Vergütungsprozesse, Qualitäts- und Sicherheitsprüfungen wie Härteprüfungen, Reibwertprüfungen, Schliffbildanalysen bis hin zu Zerreißproben garantieren höchste Sicherheit und ausgezeichnete Ergebnisse, mit denen **Friedberg** auf allen Märkten der Welt präsent ist.